
1

QoS Routing with Performance-Dependent Costs
Funda Ergüny Rakesh Sinhaz Lisa Zhangz

Abstract—We study a network model in which each network link is as-
sociated with a set of delays and costs. These costs are a function of the
delays and reflect the prices paid in return for delay guarantees. Such a
cost structure can model a setting in which the service provider provides
multiple service classes with a different price and delay guarantee for each
class.

We are given a source node s, a sink node t, and an end-to-end delay
constraint D. Our aim is to choose an s-t path and determine a set of
per link delay guarantees along this path so as to satisfy the constraint D
while minimizing the total cost incurred. In the case where the s-t path is
known, we aim to optimally partition the end-to-end delay constraint into
link constraints along the path.

We present approximation algorithms for both problems, since they are
known to be NP-hard. Our algorithms guarantee to produce solutions that
are within a factor � � � of the optimal, where � is a parameter of our
choice. The running times are polynomial in the input size and ���. We
also provide a number of heuristics for the second problem and present
simulation results.

Previous work on related problems either focused on optimal solutions
for special cost functions or on heuristics that have no performance guaran-
tees. In contrast, we present provably good approximation algorithms and
heuristics which apply to general cost functions.

Keywords— QoS routing, performance-dependent costs, approximation
algorithms, heuristics.

I. INTRODUCTION

Today’s Internet deploys best effort routing. That is, its pri-
mary focus is on providing connectivity without any assurance
of service quality. Given the dynamic nature of the traffic on
the Internet, it has been considered possible and allowable, even
inevitable for data packets to encounter unexpected delay. The
best effort routing paradigm has been adequate for traditional
applications like File Transfer Protocol (FTP). However, many
popular applications today, such as real time audio or video
transmission, must satisfy strict performance criteria to be ac-
ceptable.

There is a growing consensus that the future Internet will have
to support various quality of service (QoS) classes in addition to
the best effort service class. Each class will have its own set of
service guarantees and associated costs which will be paid by
the owner of the applications. Depending on their class, data
packets from certain applications will be given higher transmis-
sion priority over others by the network, with the aim of satis-
fying the performance requirements guaranteed to all the pay-
ing users. Naturally, the owners of the applications with more
stringent requirements should be charged a higher fee than those
with less stringent requirements; thus the Internet will be mov-
ing from a socialistic to a capitalistic model. Simple forms of

y Email: afe@eecs.cwru.edu. Electrical Engineering and Computer Sci-
ence Department, Case Western Reserve University, Cleveland, OH 44107. Part
of this work was done while the author was employed by Bell Laboratories.
z Email: frks1, ylzg@research.bell-labs.com. Bell Laborato-

ries, 600-700 Mountain Avenue, Murray Hill, NJ 07974.

QoS routing have been used in the past for type of service rout-
ing [1], and several proposals have been advanced for supporting
various forms of guaranteed service classes [2], [3], [4].

A core component of many of these proposals is the iden-
tification of a routing path of an application based on its QoS
requirements and the resource availability of the network. The
QoS requirements of an application are specified either as a set
of path-constraints (requirements on the entire path) or a set of
link-constraints (requirements on individual links) [5], [6]. A
path with sufficient resources to satisfy the QoS requirements of
an application is called a feasible path. In addition, one or more
optimization criteria may further narrow the selection among
feasible paths. The goal of QoS routing [7] then is to find the
optimal feasible path.

In addition to improving the performances of individual ap-
plications, QoS routing may also improve the overall network
efficiency [8], [5], [9]. However, these gains have to be carefully
weighed against the increased complexity of maintaining extra
state in the network and the computational cost of running QoS
routing algorithms. Thus, there is a critical need for efficient
QoS routing algorithms. Unfortunately, most QoS problems be-
long to a problem class called “multi-objective optimization”,
which, largely turns out to be NP-hard. Past efforts have concen-
trated on finding various heuristics, i.e. sub-optimal algorithms
(often, without any performance guarantees) or algorithms that
are guaranteed to be optimal only for certain special cases.

In this paper, we consider a model in which an application
is charged a per link price depending on the delay guarantee
requested. In particular, to traverse each network link an ap-
plication pays a fee that reflects the desired delay guarantee on
the link. Note that the price/delay relationship can be different
on each link. This model has been studied by several other re-
searchers. (See [10] and the references therein.)

Such a cost structure can model a setting in which the service
provider provides multiple service classes with a different price
and QoS guarantees for each link for each class. This model is
also equivalent to a network with uncertain parameters where
the delay on each link is given as a probability distribution [11],
[12].

The Problems. We consider a network of n nodes and m links
in which each link has an associated cost function. We use func-
tion ce�d� to represent the cost incurred by delay d on link e.
For a given source node s and a destination node t, an end-to-
end delay constraint of D needs to be satisfied. We study the
following two problems.

1. Constrained minimum cost path (PATH): We are to choose
an s-t path and determine the delay bound to be required from



2

every link along this path. Our goal is to minimize the sum
of the link costs along the path subject to the end-to-end delay
constraint D.
2. Constrained minimum cost partition (PARTITION): s-t path
P of p links is already chosen. We are to determine the delay
bound to be imposed on every link along path P such that the
sum of the link costs is minimized subject to the end-to-end de-
lay constraint D.

PARTITION maps a path constraint of PATH into link con-
straints. PATH is a generalization of the restricted shortest path
problem (RSP), in which each link has a fixed cost ce and delay
de.

Our Results. Since both PATH and PARTITION are NP-hard,
we present approximation algorithms. An �-approximation al-
gorithm produces a path cost that is within a factor � � � of the
optimal (minimum) path cost, while maintaining that the overall
delay is bounded by D. The parameter � here allows a trade-off
between the running time and the goodness of the approxima-
tion. The general flavor is that a running time polynomial in �

�
guarantees a solution within �� � of the optimal. Depending on
the application, we can tune the performance of our algorithms
by choosing an appropriate �. Our results are as follows.

APPROXIMATION ALGORITHMS. In Section III, we present �-
approximation algorithms for PATH and PARTITION. The run-
ning time is polynomial in the input size and the approxima-
tion parameter, i.e. polynomial in m�n� logD and �

� . See Theo-
rems 2 and 3.

In contrast to previous work concentrating on convex cost
functions, we note that our algorithms are the first to have poly-
nomial running time and performance guarantees for general
cost functions. We show in Section IV that an optimal algorithm
for convex functions can be arbitrarily bad even if the smallest
amount of non-convexity is present. (See Figure 6.) In this work
we maintain monotonicity for cost but discard the convexity as-
sumption. In addition, our algorithms also work for any additive
constraints, i.e. where the value of the constraint for the path is
summation of the values of the constraints for individual links
on the path. If the constraints are multiplicative, e.g. loss rate,
one can work with the logarithms.

HEURISTICS. In Section IV, We present a number of heuristics
for PARTITION. We show through simulation results that our
heuristics work well both in terms of performance and running
time. For instance, one of our heuristics returns near-optimal
solutions and runs in O�logD�p� log p logD � log�D�� time
on the average where p is the number of links along the path.
(We analyze both average and worst-case running times in Sec-
tion IV-A.)

As pointed out in [11], [13], [12], [14], full information on
network parameters is typically unavailable. In other words,
even an optimal algorithm will have to base its decision on
somewhat imprecise information, resulting in a sub-optimal so-
lution. Thus it makes practical sense to have efficient algorithms
that solve the problem approximately.

Related Work. It is easy to see that both PATH and PARTI-
TION can be solved optimally with dynamic programming [12].
However, the running time O�D� �m� is pseudo-polynomial.

The restricted shortest path problem (RSP), a special case of
PATH, is also NP-hard [15]. In [16], Hassin gave an approxima-
tion algorithms for solving RSP. Hassin’s algorithm (as well as
many subsequent heuristics and approximation algorithms for
RSP [17], [18]) is based on a technique called rounding-and-
scaling [19]. The general idea is to first devise an optimal (al-
beit likely pseudo-polynomial) algorithm whose complexity is
proportional to the largest possible value of the delay. If the set
of possible delay values are “scaled” down to a small enough
range, then the scaled problem can be solved optimally in poly-
nomial time. The solution is then “rounded” back to the original
delay values with some bounded error. Our approximation algo-
rithms also use the rounding-and-scaling technique.

Several studies on frameworks related to PARTITION have
been conducted, e.g. see [20], [6], [10] and the references
therein.

Lorenz and Orda [11] and Guerin and Orda [12] investigated
both PATH and PARTITION in the context of networks with un-
certain parameters. In their studies, the delay on each link is
given as a probability distribution pe�d� and their goal is to max-
imize the product of the probabilities of the path links. If our
cost function ce�d� is set to � log pe�d�, minimizing the sum of
the costs is equivalent to maximizing the product of the proba-
bilities.

Throughout the studies in [11], [10], the cost functions are as-
sumed to be convex for all links. In [11] the authors proposed a
greedy approach to obtain optimal solutions as well as a polyno-
mial time �-approximation. Variants of the greedy algorithm for
PARTITION with improved polynomial running time are given
in [10].

Chen and Nahrstedt [14] consider a slightly different model of
imprecision in the network information. Instead of maintaining
a probability distribution of delay for each link, they maintain
a range of possible delay for each link. They give a distributed
heuristic for PATH.

II. PRELIMINARIES

Network Parameters. We represent our network N as a graph
of n nodes andm links. Given an s-t path P , let p be the number
of links on the path.

Each link e has an associated cost function ce such that ce�d�
denotes the cost of buying a guarantee from the provider that
link e will have delay no more than d. Note that this defini-
tion implies that ce�d� is a nonincreasing function, i.e. ce�d�� �
ce�d�� for d� � d�. We follow the convention of previous work
and work with integral delays and costs. Our cost functions are
otherwise completely unconstrained.

Given link e and delay d, we can retrieve the cost ce�d� in
constant time. We use de�c� to denote the “inverse” of ce�d�
and it returns the smallest delay that incurs cost at most c on
link e. If no delay incurs cost c then de�c� is infinite. For given



3

link e and cost c, we can compute the delay in logD time using
binary search.

As described in Section I we are given an end-to-end delay
constraint D from a source node s to a destination node t. We
useOPT to denote the cost of the optimal s-t path subject to the
delay constraint. We assume that each link will have a minimum
delay of 1, and use C to denote the maximum possible cost on
any link, i.e. C � maxe ce���.

Graph representation. There are two standard data-structures
for representing graphs, adjacency list and adajacency matrix.
Since the cost of transforming from one representation to the
other (at most O�n��) is dominated by the running time of our
algorithms, we do not explicitly specify which data structure we
are using. Instead, we assume whichever data structure simpli-
fies the presentation.

III. POLYNOMIAL-TIME APPROXIMATION

Our approximation algorithms for PATH and PARTITION are
based on the approximation for RSP. Recall that RSP is a re-
stricted version of PATH, where each link has a fixed cost and
delay. The following result is given by Hassin in [16].

Theorem 1: RSP has an �-approximation algorithm with run-
ning time O� ��mn log logU�, where U is any upper bound on
the optimal solution OPT . (For example, U can be nC.)

In the following sections we present three �-approximation
algorithms for PATH and PARTITION. Combining their running
times of the three algorithms, we have the following theorems
for general cost functions.

Theorem 2: PATH has an �-approximation algorithm with
running timeO�X �

�mn log logU�, whereX � minfD� logC� �
logD� n� � logDg and U is any upper bound on the optimal so-
lution OPT .

The network for PARTITION effectively consists of the nodes
and links along the given s-t path. Hence, it is a special case of
PATH.

Theorem 3: PARTITION has an �-approximation algo-
rithm with running time O�X �

�p
� log logU�, where X �

minfD� logC� �logD� p� �logDg andU is any upper bound on
the optimal solution OPT .

If the “inverse” function de�c� can be computed in constant
time for given cost c as in [20], then the running times in Theo-
rems 2 and 3 can be further improved. The running time of The-
orem 2 becomes O� log n�� mn) in the setting of [11]. In the fol-
lowing presentation, we focus on the problem PATH; our tech-
niques apply to PARTITION by setting the network to be the s-t
path.

A. Algorithm 1

In order to derive an approximation algorithm for PATH from
the approximation algorithm for RSP, we transform the network
N (for PATH) into a networkN� (for RSP) such that any optimal
RSP solution of N� is equivalent to an optimal PATH solution

of N . In particular, we replace each link e of N by D parallel
links e�� � � � � eD, where link ei has cost ce�i� and delay i.

We apply Hassin’s approximation algorithm for RSP to N�.
Then we map the resulting s-t path to a path in network N
by replacing link ei with link e with delay i and cost ce�i�.
It is straightforward to verify that we have obtained an �-
approximation of PATH on N .

Now we analyze the running time, which has two compo-
nents: time of creating N� and time of applying approximation
algorithm for RSP. Since each link in N is replaced by D links
in N�, the time for creating N� is mD and the time for running
Hassin’s algorithm is O

�
D �

�mn log logU
�
.

Lemma 4: Algorithm 1 is an �-approximation of PATH with
running time O

�
D �

�mn log logU
�
.

This running time is reasonable for small D. We also re-
mark that each link e of N can be replaced by minfce���� Dg
links in N�. This is because if ce�i� � ce�j� for i � j
then we discard link ej . Hence, the number of links in N� is
mminfC�Dg and the running time in Lemma 4 can be im-
proved to O

�
mD �minfC�Dg �

�mn log logU
�
. The same al-

gorithm is considered in [11].

B. Algorithm 2

In Algorithm 1, we created a new network N� such that any
optimal RSP solution of N� is equivalent to an optimal PATH
solution of N . There is a price to be paid for such a strong guar-
antee, namely we replace link e with D links. The key idea of
Algorithm � is to achieve a weaker guarantee on the transforma-
tion with far fewer links. We will first describe this informally.
In Algorithm �, the goal was to capture all possible choices of
cost and delay assignments for link e. In Algorithm �, instead of
getting all possible cost and delay pairs, we subdivide the range
of cost, ��� ce����, into log��� ce��� many sub-ranges and pick
at most one representative from each sub-range. We illustrate
this transformation in Figure 1.

The advantage is that we have reduced the linear “blow-up”
to a logarithmic “blow-up.” The disadvantage is that we are
approximating an entire sub-range of cost by its representative.
The goal is to keep each sub-range small enough so that any
cost is within � � � of the representative cost in its sub-range.
Then we apply the approximation algorithm for RSP to this new
network. As will be shown later, the transformation may in-
troduce an error factor of � � � and the approximation algo-
rithm may introduce another error factor of ���, resulting in an
�� � ���-approximation algorithm. By starting with an � � such
that �� � ���� � �, we get an �-approximation algorithm.

A precise description follows. Consider each link e in N and
each semi-open subrange,��

ce���

�� � ��i��

�
�

�
ce���

�� � ��i

��
�

where 	 � i � log��� ce���� We find the minimum delay di that
incurs a cost within the above range. If such a delay exists, we
create a link in N� with delay di and cost ce�di�.



4

e1

1 4 7

8

4

2
1

delay5

2

e28

4

1

2 3 4 6

cost

delay

cost

(b) Cost functions for the links.

s t

e1 e2v

s t

vc=4; d=4

c=8; d=2

c=4; d=3

c=2; d=4

c=1; d=6c=1; d=7

c=2; d=5

c=8; d=1

(a) The network

(c) Modified network.

Fig. 1. Transformation of network for approximation.

We apply the approximation algorithm for RSP to N� and
map the resulting s-t path to a path in network N (as in
Algorithm �). To see that the approximate cost is at most
������OPT , we observe that the optimal RSP solution toN� is
at most ��� ��OPT . (Recall OPT is the optimal cost of PATH
on N and also the optimal cost of RSP on N� of Algorithm 1.)
Suppose a link along the optimal path of N� corresponds to link
e in N and has delay d and cost ce�d�. Due to the construction
of N�, we can find a link in N� that corresponds to link e and
has delay at most d and cost at most �� � ��ce�d�.

In terms of running time, each link e of n is replaced
by log��� ce��� � log��� C links. Creating N� requires at
most m log��� C many computations of de��� function, re-
sulting in running time O

�
m log��� C logD

�
. The num-

ber of links in N� is at most m log��� C. Note that �� �
��� � � � �� and ln�� � �� � � for small �. Thus,
by setting �� to a value slightly under ��� and running
the algorithm for ��, we obtain an �-approximation in time

O
�
m
� logC logD � logC

�
mn
� log logU

�
.

Lemma 5: Algorithm 2 is an �-approximation of PATH with

running time O
�
m
� logC logD � logC

�
mn
� log logU

�
.

C. Algorithm 3

We now present an algorithm that is inspired by the RSP ap-
proximation of Hassin [16]. The high-level idea is as follows.
Suppose we had an exact test procedure that determines whether
or not OPT is greater than some given value V . Then we could
start with some upper bound U on OPT and use this procedure
to do a binary search for the exact value of OPT .

We do not know how to design such a procedure efficiently.
Instead we have an approximate version. Specifically, we create
a test procedure TEST that determines approximately whether
or notOPT is greater than some given value V . More precisely,

TEST determines whether OPT � V or OPT � �� � ��V .
We maintain a range, �L� �� � ��U �, for OPT . To approxi-

mateOPT , we repeatedly narrow the gap between its upper and
lower bound. Initially, U can be set to nC and L can be set to
1. If TEST is applied to value V �

p
U � L, then we can ei-

ther reduce the upper bound to V �� � �� or increase the lower
bound to V . That is after one iteration, we have a smaller range

�L�� �� � ��U �� with U �

L�
�
q

U
L . Once U is within a constant

factor of L, we determine our solution path using a variation of
the TEST procedure.

An Exact Solution. To understand the TEST procedure let
us first study a pseudo-polynomial time algorithm that produces
an exact solution via dynamic programming. Let g v�c� be the
minimum delay path from s to v whose total cost is c. We be-
gin with c � 	. We compute gv�c� for all nodes v based on
gv�	�� gv���� � � � � gv�c � ��. (Line 5 of Figure 2.) Since the
minimum delay s-v path goes through some intermediate node
u (where uv is a link) and accumulates some cost b up to node
u, we obtain gv�c� by minimizing over all possible intermediate
nodes u and all possible costs b � c.

By definition, OPT is the smallest delay of an s-t path with
delay at most D. So gt�OPT � � D and for any c � OPT ,
gt�c� � D. Therefore the smallest c such that gt�c� is no more
than D is equal to OPT .

Each iteration of the for-loop on line 
 involves computingm
instances of the function de��� on line � and a minimization over
all links and all values of c on line �. Thus the running time
of one iteration is O�m logD � mc�. The for-loop has OPT
iterations, so that the overall running time is O�mOPT logD�
mOPT ��.

The algorithm EXACT finds the optimal cost OPT . To ob-
tain the actual path and the delay on each link of the path, one
can record during the execution of line 6 the links and the corre-



5

EXACT
1 initialization
2 for all c � 	, set gs�c� � 	
3 for all v �� s, set gv�	� � �
4 for c � �� �� � � � �
5 for all e, compute de�c�
6 for all v �� s, set gv�c� � minb�b�cminu�uv�Efgu�b� � duv�c� b� g
7 if gt�c� � D
8 output OPT � c and its corresponding path, exit.

Fig. 2. An exact solution.

sponding delays that yield the minimum cost. The same can be
done with the approximation algorithm as well.

The TEST Procedure. We now define our polynomial-time
�-approximate test procedure. The procedure TEST approxi-
mately determines if a given value V is greater than OPT . It
relies on a “rounding-and-scaling” technique. TEST resem-
bles EXACT , except that the costs ce�d� are scaled down
by a factor of V ��n and for-loop of line 4 is executed for
c � �� �� � � � � dn��e only. If a path of delay at most D is found
for some c � dn��e, then TEST outputs OPT � �� � ��V ;
otherwise TEST outputs OPT � V .

The procedure TEST is described in Figure 3. The scaled
down cost and its inverse are denoted by �ce�d� and �de�c� re-

spectively. In particular, �ce�d� �
j
ce�d�
V ��n

k
, and �de�c� returns the

smallest delay that incurs cost at most c on link e under the cost
function �c. It takes constant(resp. O�logD�) time to compute
�ce��� (resp. �de���).

Lemma 6: TEST is an �-approximation test. Its running

time is bounded by O
�
n
�m logD � n�

�� m
�

.

Proof: If TEST outputs OPT � �� � ��V , then TEST
has found a path with delay at most D and cost at most n��
under the cost function �ce�d�. Let P be this path. We want to
determine the cost of P under the original cost function c e���.
Observe that �ce��� � � �

j
ce���
V ��n

k
�� � ce���

V ��n . Thus the cost of

P under the cost function ce��� isX
e�P

ce���

�
X
e�P

��ce��� � ��V ��n

� V ��n

	X
e�P

�ce��� �
X
e�P

�




� V ��n �cost of P under �ce��� � number of links in P �

� V ��n � �n��� n�

� �� � ��V�

Since OPT is upper bounded by the cost of path P , OPT in-
deed is at most �� � ��V .

If TEST outputs OPT � V , then the condition gt�c� �
D failed for all paths with cost �ce��� � bn��c. To restate the
previous claim: every path with delay at most D must have cost
at least n�� under the cost function �ce���. Hence, all these paths
have costs at least �n����V ��n� � V under the cost function
ce���. Hence, OPT indeed is at least V .

The bound on running time follows by an argument similar to
that of procedure EXACT .

The Approximation Algorithm. In Figure 4 we present an �-
approximation algorithm.

Lemma 7: APPROX is an �-approximation algorithm with
running time O

�
�n� � logD� ��mn log logU

�
.

Proof: Let P be the optimal path with cost OPT (under
cost function ce���). Let �P be the path returned by EXACT
under the scaled cost �ce���. (See lines 8-9 of Figure 4.) We want
to show that the cost of path �P �

P
e� �P ce��� � �� � ��OPT .

We first observe, that since �P is optimal under the cost �ce���,X
e� �P

�ce��� �
X
e�P

�ce���� (1)

Due to assignment to �ce��� on line �,X
e�P

�ce��� �
X
e�P

�
ce���
L��n

�

�
X
e�P

ce���
L��n

�
OPT

L��n
� (2)

and X
e� �P

�ce��� �
X
e� �P

�
ce���
L��n

�

�
X
e� �P

�
ce���
L��n

� �



�
X
e� �P

ce���
L��n

� n� (3)

Combining (1) and (2), we obtainX
e� �P

�ce��� � OPT

L��n
� (4)



6

TEST �V �
1 initialization
2 for all c � 	, set gs�c� � 	
3 for all v �� s, set gv�	� � �
4 for c � �� �� � � � � bn��c
5 for all e, compute �de�c�

6 for all v �� s, set gv�c� � minb�b�cminu�uv�Efgu�b� � �duv�c� b� g
7 if gt�c� � D
8 output OPT � �� � ��V , exit
9 output OPT � V

Fig. 3. A polynomial-time �-approximation test.

APPROX
1 initialization
2 set L � �
3 set U � nC
4 while U � �L

5 set V �
p
U � L

6 if TEST �V � outputs OPT � V , set L � V
7 if TEST �V � outputs OPT � �� � ��V , set U � �� � ��V

8 set �ce�d� �
j
ce�d�
L��n

k
9 call EXACT with cost �ce�d�

Fig. 4. An �-approximation algorithm.

and combining (3) and (4) we obtain,

X
e� �P

ce���
L��n

� n � OPT

L��n
�

This implies,

Cost of path �P under ce��� �
X
e� �P

ce��� � OPT � L��

Since L is a lower bound for OPT , we conclude that the cost of
path �P under the cost function ce��� is at most OPT �OPT� �
�� � ��OPT .

The running time of APPROX is the summation of the
running time of EXACT on line � and the running time of
TEST inside the while loop. In terms of running time of
EXACT , the for-loop of Figure 2 is executed

P
e� �P �ce���

times. From (4),
P

e� �P �ce��� � OPT
L��n . Since EXACT is exe-

cuted when OPT � U � �L, our analysis above implies,

X
e� �P

�ce��� � OPT

L��n
� �n���

Therefore, the running time of EXACT is

O
�
n
�m logD � n�

�� m
�

. The procedure TEST is ex-

ecuted log logU times and each execution takes time

O
�
n
�m logD � n�

�� m
�

. The overall running time of

APPROX is O
��

n
�m logD � n�

�� m
�
log logU

�
.

Proof: (of Theorem 2) The proof follows by a case analy-
sis of X � minfD� logC� � logD� n� � logDg. If X � D, we
use Algorithm 1; if X � n

� �logD, we use Algorithm 3; other-
wise we use Algorithm 2. In the first two cases, upper-bounding
the running time is straightforward (Lemma 4 and 7). In case 3,
logC
� � logD � n

� � logD, implying logC � n. Thus the run-
ning time of Algorithm 2 is O�m� n logD� logC

�
mn
� log logU�,

which is O
��

logD � logC
�

�
mn
� log logU

�
.

Theorem 3 follows in the same manner by setting the s-t path
to be the whole graph and thus letting m � n � p, where p is
the number of links along the path.

IV. HEURISTICS FOR PARTITION

In the previous section, we gave three different �-
approximation algorithms for the PATH problem and PARTI-
TION problem. In this section we describe several heuristics for
PARTITION. Although these heuristics have no performance
guarantees, they work well both in terms of running time and
performance in our simulations.

Let P be the given s-t path with the end-to-end delay con-
straint delay D, and let p be the number of links on P .



7

Greedy Algorithm We begin with a greedy approach first pro-
posed by [21] and also used by Lorenz and Orda in [11], [10].
Figure 5 contains a description of the algorithm in [11] which
carries the essence of this greedy approach. Variants of the al-
gorithm with improved running times, O�p log p log�D�p��, are
given in [10].

In Figure 5, one unit of delay is initially assigned to each link
along path P with very low delay and very high total cost. In
each iteration of the for-loop (line ), one unit of delay is added
to the link that causes the largest reduction in total cost.

The greedy algorithm returns an optimal solution if the cost
function ce�d� on every link is convex. Recall that a curve is
called convex (resp. concave) if its slope is nondecreasing (resp.
nonincreasing). We remark that the greedy algorithm is highly
sensitive to even the slightest concavity. For example, consider
a path with two links e� and e� and a delay constraint D �
��. The cost functions for e� and e� shown in Figure 6�a� are
convex. The function for e� shown in Figure 6�b� has a slight
concavity, and the function for e� is unchanged. For �a�, the
greedy algorithm allocates eleven units of delay to link 1 and
one unit of delay to link 2 for a total cost of 6; whereas for �b�,
the greedy algorithm allocates two unit to link 1 and ten units to
link 2 for a total cost of 17. The solution given in �a� is in fact
optimal for both problems. It is easy to modify this example
to make the greedy solution arbitrarily worse than the optimal
solution.

4

2

2

15

(b) Link 1 has concavity, total cost = 17

link 1

(a) All convex, total cost = 6

c(d)

link 1 link 2

link 2

d

D=12

11

1021

11

Fig. 6. Output of greedy algorithm on links with �a� convex, �b� non-convex
costs.

In the context of networks with uncertain parameters [11], it
is realistic to expect that the cost functions (logarithm of proba-
bility) are convex. However, for general cost functions one may
expect nonconvexity. In our heuristics we make no convexity
assumption.

A. Heuristics

The greedy algorithm always makes the locally optimal
choice. However, for non-convex cost functions one might have
to make some locally non-optimal choices to reach the globally
optimal solution. In this section, we propose two heuristics that
try to rectify the “one step look-ahead” property of the greedy
algorithm. As in the greedy algorithm, they both start out with
one unit of delay assigned to each link (at a high cost) and pro-
ceed by adding delay to chosen links (thus reducing price) un-
til all D units of delay are allocated. The first heuristic is a
back-tracking algorithm. It continues adding single delay units
to links in a greedy fashion until it realizes that it has made a
mistake, at which point, it cancels some of its most recent addi-
tions. The second heuristic considers the effect of adding delay
in chunks of various sizes rather than single units and picks a
link and chunk size which will cause the largest cost reduction
per delay unit. That is, instead of considering what is optimal
for one step, it considers what is optimal for one step, two steps,
four steps etc.

Greedy Heuristic with Rollback (Figure 7).
Our first heuristic uses backtracking: it proceeds greedily by

always adding one unit of delay to the link that offers the largest
cost reduction per delay unit. However, if the per delay cost
reduction (say g) due to the current delay allocation is greater
than the previous reduction (meaning that a concave region is
reached), our algorithm checks every link and performs a roll-
back where possible. The rollback consists of removing delay
units from each link until a unit whose reduction was at least g
is reached. In this way recent bad choices are removed to make
room for future good choices. Note that if all cost functions
are convex, no rollbacks are possible and our algorithm has the
same performance as the greedy algorithm.

Although the number of rollbacks can be large in the worst
case, our simulations suggest that rollbacks happen infrequently
in many scenarios.

Variable Step Size Heuristic (Figure 8). In this heuristic we
allow the allocation of delay in sizes greater than a single unit
during a single iteration. We pick the best link and the best delay
increment, where best is defined as the highest cost reduction per
delay unit. The motivation is that if a portion of a curve offers
large per delay cost reduction, we make sure we are not stuck
in an earlier part of that curve. Allocating delay thus in large
chunks has the additional advantage of making the heuristic run
faster.

The heuristic works as follows. For every iteration, we calcu-
late the cost reduction per delay unit, for different delay alloca-
tion sizes for each of the p links. We consider two variants of
this algorithm. In the first variant, the delay allocations are all
possible powers of 2, and therefore, at most logD of them are
computed. In the second variant, we consider all possible delay
allocation between � and D. Figure 8 describes the first variant
of the algorithm.



8

GREEDY (P, D)
1 set delay � D
2 while delay � 	
3 for all e � P
4 set ge= reduction in cost for adding 1 unit delay to e
5 pick e� such that ge� � maxe�ge�
6 add 1 unit delay to e�

7 set delay � delay � �

Fig. 5. Greedy algorithm.

GREEDY WITH ROLLBACK(P,D)
1 set delay � D
2 while delay � 	
3 for all e � P
4 set ge= drop in cost for adding one unit of delay to e
5 pick e� such that ge� � maxe�ge�
6 add one unit of delay to e�

7 set delay � delay � �
8 for every ei � P , ei �� e�

9 Rollback(e�� ei� delay�

ROLLBACK(e�� ei� delay)
1 while drop in cost for last delay on ei � on e�

2 deallocate one unit of delay from e i
3 set delay � delay � �

Fig. 7. Greedy algorithm with rollback.

Let us concentrate on the running time of the first variant. To
keep the presentation simple, we temporarily ignore ensuring
that d� is at most delay (lines 13-15). COSTDROP�e� calcu-
lates logD per delay cost reductions for each link e and stores
the maximum of these in Se�logdelay�. Its running time is
O�logD�. PH is a heap consisting of maximum possible re-
duction for each link e. Building this heap initially (lines 3-5)
involves p invocations of COSTDROP and a build-heap proce-
dure on p elements, which takes O�p logD � p� = O�p logD�
time. In each iteration of the while-loop (line �), we perform
delay allocation on the link with largest possible cost reduction.
This involves two heap operations and one COSTDROP . There-
fore the running time per iteration is O�log p� logD�. If D � is
the number of iterations of the while loop then the running time
(ignoring lines 13-15) is O�p logD �D ��logD � log p��.

In order to ensure that d� is at most delay (lines 7-10), we
need to do some extra work every time delay is dropped across
a power of 2 (lines 13-15). In particular, some of the elements in
PH may correspond to delays that are no longer valid (in other
words, greater than the current value of delay). So we find the
maximum valid cost reduction per delay unit for each link and
rebuild the heap PH with these new reduction values. Each
execution of lines 13-15 takes time O�p� and this is repeated
at most logD times over the course of the algorithm. Thus the

running time of the algorithm isO�p logD�D ��logD�log p��.
Since D� � D, the worst case running time is O�p logD �

D�logD � log p��. However, this bound is pessimistic. If the
curve contains concave regions then D � can be much smaller
than D. For an extreme case in which the curves are purely con-
cave, D� can even be constant. If the expected delay allocation
per step is about �D

logD , the average of all possible step sizes,

then D� is expected to be O�log�D� and the running time is
O�logD�p� log p logD � log�D��.

In the second variant of the heuristic, the running time be-
comes O�D�p�D���. The worst-case running time is O�pD�
D��; the expected time is O�pD �D logD�.

We remark that it is reasonable to consider other choices of
step sizes. For example, step sizes may be delays corresponding
to cost equal to �� �� 
� � � �. In this case, at most logC values are
computed per link, where C is the highest cost on any link.

B. Simulation Results

The following table summarizes our simulation results. All
experiments are run on a path of 30 links with D � ��	. Each
group 1-7 of experiments is the average of 100 runs of differ-
ent cost functions. Each group of experiments aims to test cost
functions with different shapes; the cost functions for the earlier



9

VARYING STEPS(P, D)
1 set delay � D
2 set logdelay � blog�delay�c
3 for all links e � P
4 COSTDROP (e)
5 set PH � heap consisting of fSe�logdelay� � e � Pg
6 while delay � 	
7 set g � deletemax�PH�
8 set e�� d� = link, step size for yield g
9 add d� delay units to e�

10 set delay � delay � d�

11 COSTDROP (e	)
12 insert Se� �logdelay� to PH
13 if �blog �delay�c � logdelay�
14 set logdelay � blog �delay�c
15 set PH � heap consisting of Se�logdelay�

COSTDROP (e)
/* Generates data structure for link e; Se�logdelay� is the largest yield for link e */
1 for l � 	� �� � � � logdelay
2 set ge��l � (drop in cost from adding � l delay to e)��l

3 for i � 	� �� � � � logdelay
4 set Se�i� � max��l�ifge��lg

Fig. 8. Greedy heuristic with variable step size.

groups tend to have more alternating convex/concave regions
than the later groups. The actual cost functions are generated
randomly with given expected sizes for the convex/concave re-
gions. Each number in our table shows the percentage error
for the corresponding heuristic 1. Out of the greedy algorithms
in [11], [10] we implement the simplest one for our simulation.

Simple Greedy w/ Varying Step Varying Step
Greedy Rollback Variant I Variant II

1 24.3 16.4 5.0 0.1
2 27.1 14.5 3.9 0.4
3 25.7 14.3 5.0 0.0
4 20.8 12.2 3.5 0.0
5 22.3 9.6 4.0 0.0
6 17.6 9.1 3.1 0.0
7 20.4 10.2 2.2 0.0

As we can see, the relative performance of the heuristics re-
main largely unaffected by the shape of the curves. The heuris-
tics with varying step sizes consistently perform the best. We
observe the trade-off between running time and performance of
the two variants of the varying step heuristics. Variant II has
near-optimal performance, and its running time is better than
the straight-forward dynamic programming approach as shown
before. The greedy heuristic without rollback is unable to reach
global optimality due to its local choices.

�The percentage error is calculated with respect to the difference between the
initial cost and the optimal cost. This error measurement does not affect the
relative performance of any two heuristics.

For our simulations on paths of different lengths, we observe
similar results. We omit the data here.

As remarked earlier, all heuristics give optimal solutions for
convex functions, since they degenerate to the greedy heuristic.

V. CONCLUSION

In this paper, we presented the first polynomial-time �-
approximations for the PATH and PARTITION problems with
general cost functions. Whether or not their running times can
be improved remains an interesting open question. We also gave
heuristics for PARTITION. Applying our results to more com-
plicated structures, such as multicast trees, is left for future re-
search.

REFERENCES

[1] Q. Ma, Quality of Service Routing in Integrated Services Network, Ph.D.
thesis, Computer science Department, Carnegie Mellon University, 1998.

[2] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture: an overview,” RFC 1633.

[3] “Differentiated service for the internet,” URL = diff-
serv.lcs.mit.edu.

[4] G. Apostolopoulos, R. Guerin ad S. Kamat, A. Orda, T. Przygienda, and
D. Williams, “QoS routing mechanisms and OSPF extensions,” Experi-
mental RFC.

[5] W. Lee, M. Hluchyi, and P. Humblet, “Routing subject to quality of service
constraints in integrated communication networks,” IEEE Networks, July
1995.

[6] R. Nagarajan, J. F. Kurose, and D. Towsley, “Allocation of local quality of
service constraints to meet end-to-end requirements,” in IFIP Workshop
on the Performnace Analysts of ATM Systems, 1993.

[7] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework for
QoS-based routing in the internet,” RFC 2386, Aug. 1998.



10

[8] G. Apostolopoulos, R. Guerin ad S. Kamat, and S. Tripathi, “Quality of
service routing: a performance perspective,” in ACM Sigcomm, 1998.

[9] Z. Wang and J. Crowcroft, “Quality of service routing for supporting mul-
timedia applications,” IEEE Journal selected areas in communications,
vol. 14, no. 7, pp. 1228–1234, 1996.

[10] D. Lorenz and A. Orda, “Optimal partition of QoS requirements on unicast
paths and multicast trees,” in IEEE Infocom, 1999.

[11] D. Lorenz and A. Orda, “QoS routing in networks with uncertain param-
eters,” IEEE/ACM Transactions on Networking, pp. 768 – 778, December
1998.

[12] R. Guerin and A. Orda, “QoS based routing in networks with inaccurate
information: Theory and algorithms,” IEEE/ACM Transactions on Net-
working, pp. 350 – 364, June 1999.

[13] A. Orda, “Routing with end to end QoS guarantees in broadband net-
works,” IEEE/ACM Transactions on Networking, pp. 365 – 374, June
1999.

[14] S. Chen and K. Nahrstedt, “Distributed QoS routing with imprecise state
information,” Tech. Rep., Computer Science Department, University of
Illinois, May 1998.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to
the Theory of NP-Completeness, W. H. Freeman, 1979.

[16] R. Hassin, “Approximation schemes for the restricted shortest path prob-
lem,” Mathematics of Operations Research, vol. 17, no. 1, pp. 36 – 42,
February 1992.

[17] C. Phillips, “The network inhibition problem,” in ACM Symposium on the
theory of computing (STOC), May 1993.

[18] S. Chen and K. Nahrstedt, “On finding multi-constrained paths,” in IEEE
International Conference on Communication, June 1998.

[19] S. Sahni, “Algorithms for scheduling independent tasks,” jacm, vol. 23,
pp. 116–127, 1976.

[20] V. Firoiu and D. Towsley, “Call admission and resource reservation for
multicast sessions,” in IEEE Infocom, 1996.

[21] O. Gross, A class of discrete type minimization problems, Rand Corpora-
tion, 1956.


